Rational solution for the minimal representation of G_{2}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 234415
(http://iopscience.iop.org/0305-4470/23/19/023)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 08:59

Please note that terms and conditions apply.

COMMENT

Rational solution for the minimal representation of $\boldsymbol{G}_{\mathbf{2}}$

Zhong-Qi Ma \dagger
CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China

Received 13 June 1990

Abstract

The rational solution for the minimal representation of the quantum G_{2} is obtained as a limit of the trigonometric one presented by Kuniba.

A rational solution to the Yang-Baxter equation can be obtained from a spectrumdependent trigonometric one through an appropriate limit process [1-3]. The latter can be computed by a standard method of Jimbo [4]. The key in this method is to find out the quantum generators $X_{\theta}^{ \pm}$and H_{θ} associated with the maximal root θ. Their general expressions are not easily obtained, but for a given representation of a given quantum Lie universal enveloping algebra, it may be possible. Kuniba [5] found the expressions for the minimal (seven-dimensional) representation of the quantum G_{2}, and then obtained the spectrum-dependent solution $R(u)$ to the Yang-Baxter equation. It is straightforward to obtain the corresponding rational solution, which means that another solvable 175 -vertex model may be constructed.

Multiplying a factor $\left\{q^{3 u}\left(1-q^{2}\right)\left(1-q^{8}\right)\left(1-q^{10}\right)\right\}$ for simplicity, we have

$$
\begin{align*}
\check{R}_{q}(x)=q^{3 u} & \left(1-q^{2}\right)\left(1-q^{8}\right)\left(1-q^{12}\right) R(u) \\
= & \left(1-x q^{2}\right)\left(1-x q^{8}\right)\left(1-x q^{12}\right) \mathscr{P}_{2 \bar{\Lambda}_{2}}+\left(x-q^{2}\right)\left(1-x q^{8}\right)\left(1-x q^{12}\right) \mathscr{P}_{\bar{\Lambda}_{1}} \\
& +\left(1-x q^{2}\right)\left(x-q^{8}\right)\left(1-x q^{12}\right) \mathscr{P}_{\bar{\Lambda}_{2}}+\left(x-q^{2}\right)\left(1-x q^{8}\right)\left(x-q^{12}\right) \mathscr{P}_{0} \tag{1}
\end{align*}
$$

where $x=q^{2 u}$. We redefine the spectral parameter u as u / η where η is called the quantum parameter in the rational solutions. Taking the limit $q \rightarrow 1$, we obtain the corresponding rational solution $R(u, \eta)$ as follows:

$$
\begin{align*}
R(u, \eta)= & P \check{R}(u, \eta)=\lim _{q \rightarrow 1} P \check{R}_{q}\left(q^{2 u / \eta}\right) /\left(1-q^{2 u / \eta}\right)^{3} \\
= & (1+\eta / u)(1+4 \eta / u)(1+6 \eta / u) P_{2 \bar{\Lambda}_{2}}+(1-\eta / u)(1+4 \eta / u)(1+6 \eta / u) P_{\bar{\Lambda}_{1}} \\
& +(1+\eta / u)(1-4 \eta / u)(1+6 \eta / u) P_{\bar{\Lambda}_{2}}+(1-\eta / u)(1+4 \eta / u)(1-6 \eta / u) P_{0} \\
= & \mathbb{0}+(3 t+90) \eta / u+\left(180+4 P+18 t+28 P_{0}\right) \eta^{2} / u^{2}+24 P \eta^{3} / u^{3} \tag{2}
\end{align*}
$$

where P denotes the transposition,

$$
\begin{aligned}
& P_{\Lambda}=\left(\mathscr{P}_{A}\right)_{q=1} \quad \Lambda=2 \bar{\Lambda}_{2}, \bar{\Lambda}_{1}, \bar{\Lambda}_{2}, 0 \\
& \left(P_{0}\right)_{\mu \nu, \mu^{\prime} \nu^{\prime}}=\frac{1}{7}(-1)^{\mu+\mu^{\prime}} \delta_{-\mu \nu} \delta_{-\mu^{\prime} \nu^{\prime}} \quad \mu, \nu, \mu^{\prime} \text { and } \nu^{\prime}=-3,-2, \ldots, 2,3
\end{aligned}
$$

[^0]and
$$
t=\sum_{a} I_{a} \otimes I_{a}
$$
where I_{a} are the orthogonal bases of G_{2} with the convention that the square length of the longer root is 2 (see [5]). Obviously, we have
\[

$$
\begin{equation*}
R(u, \eta) R(-u, \eta)=\left(1-\eta^{2} / u^{2}\right)\left(1-16 \eta^{2} / u^{2}\right)\left(1-36 \eta^{2} / u^{2}\right) \mathbb{D} \tag{3}
\end{equation*}
$$

\]

Acknowledgment

The author would like to thank Professor Atsuo Kuniba for sending his offprint [5]. This work was supported by the Natural Science Foundation of China through the Nankai Institute of Mathematics.

References

[1] Jimbo M 1985 Lett. Math. Phys. 1063
[2] Hou Bo-Yu, Hou Bo-Yuan, Ma Zhong-Qi and Yin Yu-Dong 1990 Rational solution to Yang-Baxter equation in the octet representation Preprint BIHEP-TH-90-12
[3] Zhong-Qi Ma 1990 J. Phys. A: Math. Gen. 23 in press
[4] Jimbo M 1986 Commun. Math. Phys. 102537
[5] Kuniba A 1990 J. Phys. A: Math. Gen. 231349

[^0]: \dagger Permanent address: Institute of High Energy Physics, PO Box 918(4), Beijing 100039, People's Republic of China.

